If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2=160
We move all terms to the left:
t^2-(160)=0
a = 1; b = 0; c = -160;
Δ = b2-4ac
Δ = 02-4·1·(-160)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*1}=\frac{0-8\sqrt{10}}{2} =-\frac{8\sqrt{10}}{2} =-4\sqrt{10} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*1}=\frac{0+8\sqrt{10}}{2} =\frac{8\sqrt{10}}{2} =4\sqrt{10} $
| 1.41x=9.87 | | 3^2x-77*3^x-324=0 | | 31.10=6g+3.98 | | P=-2p-15 | | 2.4+10m=7.57 | | 5x-40=x+24 | | 5x(3x+2)=-9x-6 | | 8x+8=8x | | 13y-8y-15=47.75 | | 7x+4=3(4x-1) | | -14h+-17=11 | | (b/13)-(3b/13)=(16/13) | | -4x-3=4x+3 | | 10m=4.66 | | 20/100=142/x | | -5r-40=-54 | | 2x-4(x-3)=-9+4x-28 | | 5+7n=22 | | 1/3x-1/3=+7 | | h/2-10=14 | | 3/4n+7=28-n | | -55.04+h+39.68=-71.03 | | -67=-3b | | x+51/3=7 | | 29-7g=3g+9 | | x^2=36/49 | | -4=2v+6 | | 4.2+10m=8.86 | | m+13=`7 | | 8d+21=12d+5 | | 220=70+31w | | -8+8y=10y+10 |